
SuperSYNTH A Gamma-Ray Spectroscopy Interface to MCNP

Overview What SuperSYNTH is and does

- A Gamma-Ray Spectroscopy Interface to MCNP designed to simplify modeling of laboratory and real world measurements
- Requires MCNP to be installed and functioning to generate spectra (doesn't need MCNP if only generating an input deck)
- Organizes the problem into six logical steps
- Generates a fully commented and functional MCNP input deck
- Runs MCNP, then parses the generated mctal file to produce a spectrum that can be viewed and saved in a number of different spectral data formats

An Over Simplified Gamma-Ray Measurement

Six Easy Pieces

(With apologies to Richard Feynman)

- Source Geometry and Bulk Composition
- Source Term (²⁴¹Am, ¹³⁷Cs, ⁶⁰Co, etc)
- Absorbers (shape, location, composition, etc)
- Sensor (type, size, resolution, etc)
- Counting Parameters (energy calibration, etc)
- Counting Environment (shield)

=> MCNP => Generated Gamma-Ray Spectrum

Source Geometry and Composition

hell •	Material: WGP Density: 19	u DOE 3013
-2.8 cm	Deneity:	
	Densky. 19	9.84 g/cm^3
0.01 cm		A Atom
		• 0 1
¥7.108 9	Add Element	Delete Element
cm	94 239 1 \$ Plut	tonium
cm		
	47.108 9 cm	47.108 g Add Element cm 94 239 1 \$ Plut

Source Geometry

	Mass	Off-Axis	Edge-On
 Point 		X	
 Sphere 	X	X	
 Shell 	X	X	
 Disk 	X	X	X

Source Term

Element	Isotope	Quantity		Decay Time
Actinium	• 227	•	Bq (d/s) 🔻	·] [1 [s •
Periodic Table] • 🔲	Min = 210	Max = 238	Daughters
	1.00E+04d	270060	False 1s	60 Cobalt
Add to List	1.00E+04d 1.00E+04d	950241 550137	False 1s False 1s	241 Americium 137 Cesium
Remove from List				
Process				

Gamma-Ray Data Libraries

- Enhanced TORI-99 (based on the LBL Table of Radioactive Isotopes compilation revised to 1999)
- PC_NuDat (based on the NNDC compilation revised to 2004)
- User Supplied (It's an open format that can implemented as a Microsoft Access or SQLite database

Library Server

Searching	for nuclides in fi	ile: D:\C# Pr	ojects\Data	aLibraries\N	ew_TORI-99	.mdb
Nuclide	Activity (Bq)			Br1		Br2
 Co 60	1.00000E+04					
	1.00000E+04					
	1.00000E+04					
Adding 21	1 Gammas for nuclid	ie Co-60				
Adding 16	6 Gammas for nuclic	ie Am-241				
Adding 22	2 Gammas for nuclio	ie Cs-137				
Peaks add						
Peaks belo	ow the energy three	shold (0.0 ke'	V) = 0			
Looking fo	or duplicated peaks	3				
********	******	********	****			
Calculated	d Exposure Rate @1n	n: 4.58E-07 []	R/h]			
********	****************	**********	****			

Absorbers

ile Edit W Absorber Geome Absorber Num Absorber Geo	ber: 3	k +]	Composition Material: Absort Density: 1.0	200000
Distance from Detector Off Axis:	10.0 0.0	cm cm	Element	A Atom 0 1 Delete Element
Radius: Thickness: Absorbers	19.4 1.0	cm cm		
1, SHELL, -2.8 2, SHELL, -2.8				
Edit	Delete	Delete List	Cancel	Return

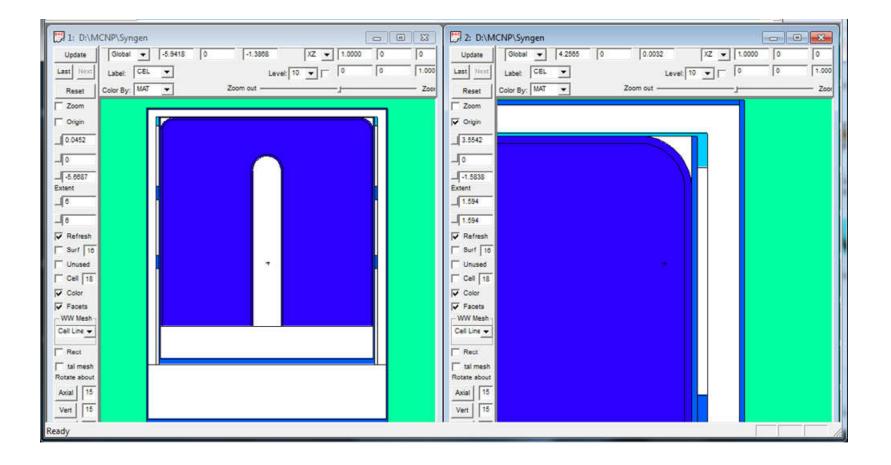
Absorber Geometries

Off-Axis Edge-On

- Shell x
- Disk x x

Sensors

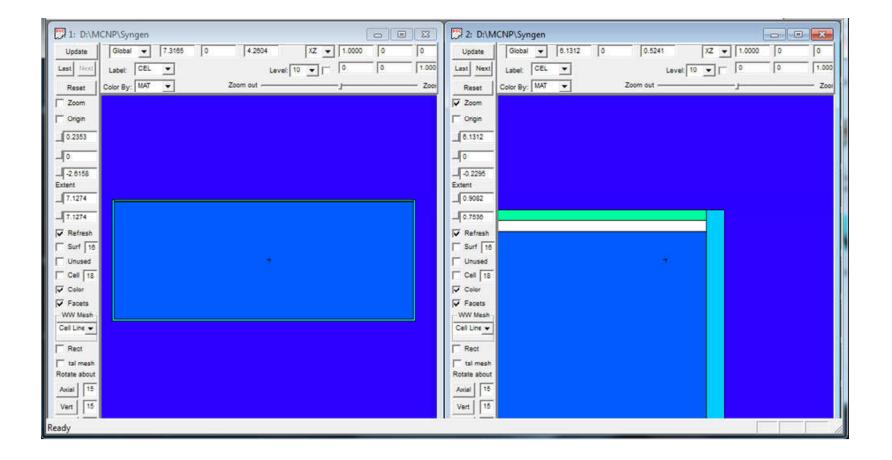
- Detailed High Purity Coaxial Ge (Gec)
- Generic Right Circular Cylinder (RCC)
- Generic Box (planar Ge, Large PVT, etc)
- The RCC and Box sensors may be any reasonable size and composition (there are a number of standard default compositions + user defined materials {Tomato Soup?})


Sensors

- Ge sensors have many adjustable parameters in addition to the crystal dimensions
- All three sensor types have a list of standard EndCap and Window materials and allow a "User Defined" material for either of these components

Germanium Diode

Edit FWH etector Gec etector Materials a	RCC		Composition
Diode "Type" :	P	•	EndCapWindow Material: Carbon Fiber
Diameter:	7.62	cm	Density: 0.05 g/cm^3
Length: Bulletized:	7.62	cm	
Dead Layer Face:	0.070	cm	Element A Atom
Walls:	0.070	cm	Add Element Delete Element
Hole Diameter:	1.00	cm	6 0 1 \$ Carbon
Hole Offset:	1.40	cm	
EndCap:	AI	•	
EndCap Thickness:	0.05	cm	
Window:	User Defi	ned 🔻	
Window Thickness:	0.05	cm	Register Material
EndCap Spacing:	0.30	cm	Cancel


Germanium Diode Model

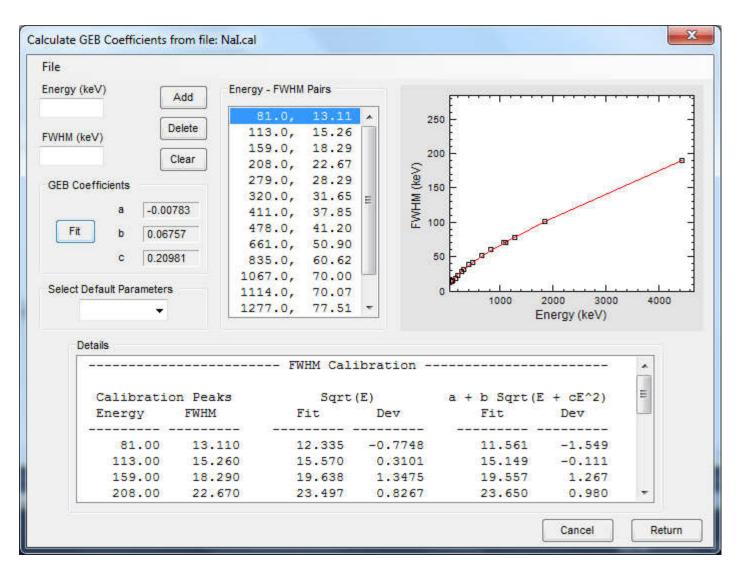
RCC Sensor

etector 🔘 Ge etector Materia Sensor :	ec (RCC als and Geom User Defin	etry	Composition © Detector © End Cap © EndCapWindow	
Diameter: Length:	12.70	cm cm	Material: Tomato Soup Density: 0.987 g/c	m^3
Dead Layer Thickness:	5.08	cm	Element A A Add Element Delete Elem	
EndCap: EndCap Thickness:	AI 0.10	- cm	1 0 31 \$ Hydrogen 6 0 19 \$ Carbon 8 0 11 \$ Oxygen	
Window: Window Thickness:	AI 0.05	• cm	Register Material	
EndCap Spac	ing 0.05	cm	Cancel	eturr

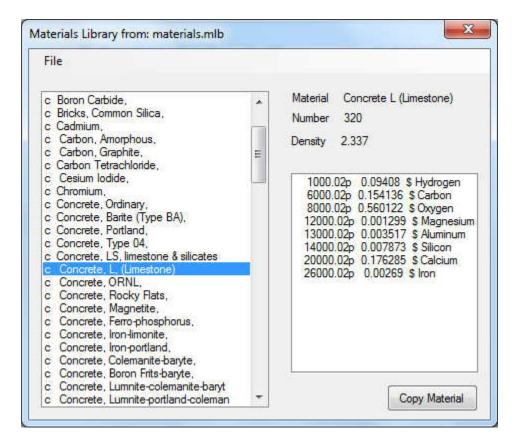
RCC Sensor Model

Box Sensor

etector 🔘 Ge etector Materia	ec (© RCC	- 1940 V. I.	💮 End	ector Cap CapWindow
Sensor:	Nal	•		
Width:	7.62	cm	Material: Carbon	Fiber
ar an	1.02		Density: 0.05	g/cm^3
Length:	7.62	cm		
Depth :	7.62	cm	Element	A Atom
	0.007			• 0 1
Dead Layer			Add Element	Delete Element
Thickness:	0.000	cm	6 0 1 S Carbon	
EndCap:	AI	•		
EndCap Thickness:	0.05	cm		
Window:	User Define	d 👻		
Window	70720		Register	Material
Thickness:	0.05	cm		


Tools to make life a bit easier

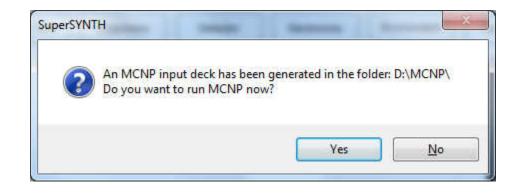
• GEB coefficient calculator to fit the MCNP Full Width at Half Maximum function FWHM = $a + b^*\sqrt{E + cE^2}$


to experimental data

• A Materials Library utility

GEB Coefficient Calculator

Materials Library Utility

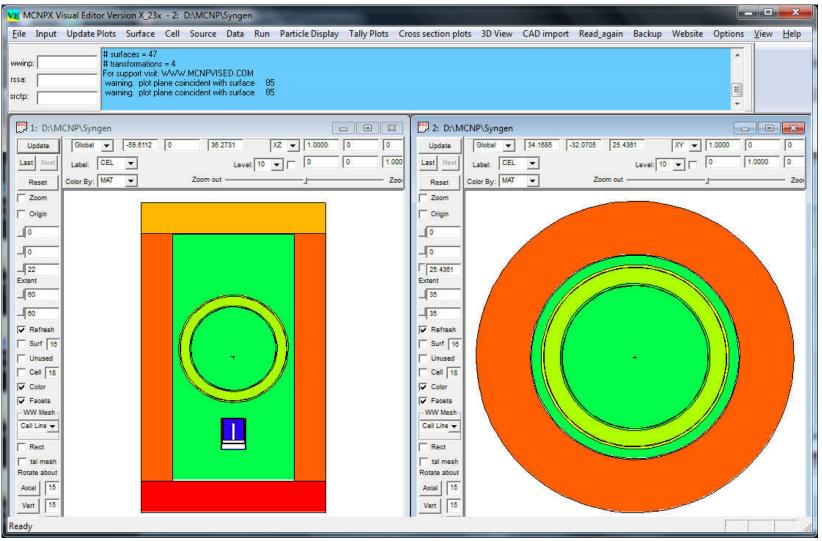

Counting Parameters

E Counting P	arameters	×
<u>F</u> ile		
Energy Calibra	ation	
Zero =	0	(keV)
Gain =	0.75	(keV /ch)
Quad =	0	(keV / ch^2)
🔲 Nal I	ntrinsic Non-Linear	ity
	nels = 4096 ime = 1000 ergy 3072 (keV)	sec.

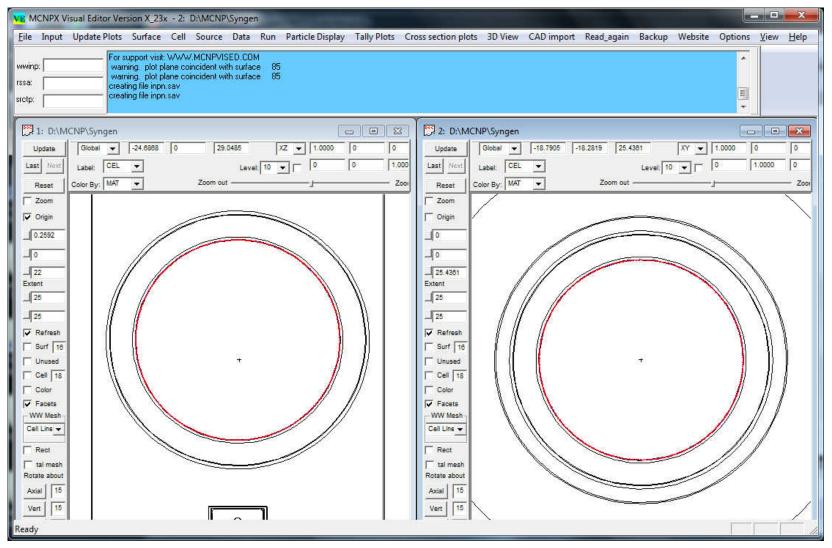
Counting Environment

ountingEnvironment		×
File Edit		
	Composition Material: Copper Density: 8.961 Thickness: 0.201 Element A Add Element Dele	<u> </u>
InnerCeiling Copper, m801 InnerWall: Copper, m802 InnerFloor: Copper, m803 	Register Mater	ial

Generated Input Deck



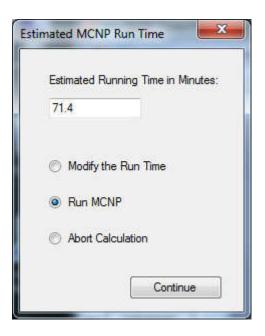
• All of the surfaces in the generated input deck are on translation cards so you can easily pull one or more components out of the model and reuse them in another project!


```
. . .
С
c Outer Shield
С
 906 4 cz 32.768 $ Outer Bounding cylinder
 907 4 pz 49.966 $ Outer Bounding top Surface
 908 4 pz -45.570 $ Outer Bounding bottom Surface
С
c REQUIRED blank line to separate Surface cards from Data cards
С
С
c Surface Translation Cards
С
c Translations to move detector and other elements to appropriate location and
c orientation. The detector, as defined above, is pointed in the +z direction.
c The translation cards below rotate the detector to be facing along different
c axes.
С
С
      х у z
               xx '
                    yx '
                        zx'
                             xy' yy'
                                      zy'
                                            xz' yz' zz'
c *tr1 0 0 -8
               0
                    90
                        90
                             90 180
                                      90
                                                     $ rotate +z to -z
c *tr1 -4 0 0
               90 90
                       0 90 0
                                     90
                                                     $ rotate +z to -x
c *tr1 4 0 0 90 0
                       90 90 90
                                      0
                                                     $ rotate +z to +x
c *tr1 0 -4 0 0
                    90
                        90
                              90 90
                                      0
                                                     $ rotate +z to -y
c *tr1 0 4 0
                             0
                                 90
               90
                    90
                         0
                                      90
                                                      $ rotate +z to +y
c *tr1 0 0 4
                                         $ no rotation, just translation
С
c The following translations are used in this model.
С
                       $ Sensor
Tr1
      0.0
           0.0
                0.0
                    $ Source
Tr2
          0.0
               0.0
      0.0
                    $ Absorbers
Tr3
      0.0
           0.0
                0.0
Tr4
      0.0
           0.0
                0.0
                      $ Environment
С
. . .
```

25

Check the Geometry

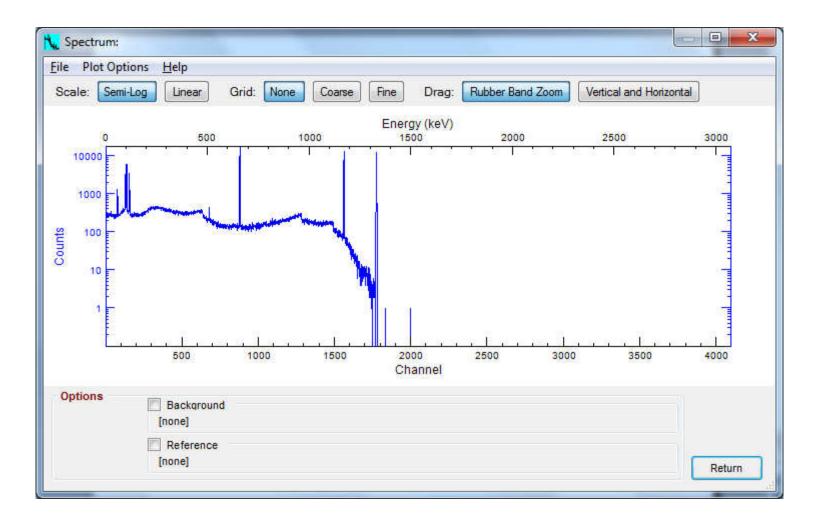
And the Source Location


Estimate MCNP Run Time

• Test run with nps 1000000

warning.	material	6	has	been	set	to	a	conductor.	
warning.	material	606	has	been	set	to	a	conductor.	
warning.	material	720	has	been	set	to	a	conductor.	
varning.	material	801	has	been	set	to	a	conductor.	
varning.	material	802	has	been	set	to	a	conductor.	
warning.	material	803	has	been	set	to	a	conductor.	
arning.	material	805	has	been	set	to	a	conductor.	
arning.	material	806	has	been	set	to	a	conductor.	
warning.	material	807	has	been	set	to	a	conductor.	
ւտը 1	on file tester	i Sa	ctm nps			Ø.(90 9	nrn = coll =	0 0
act is	done								

MCNP Run Options


 Calculate the full run time and display some options

Running the Selected Option

warning.	material	6	has	been	set	to	a	conductor.		
warning.	material	606	has	been	set	to	a	conductor.		
warning.	material	720	has	been	set	to	a	conductor.		
warning.	material	801	has	been	set	to	a	conductor.		
warning.	material	802	has	been	set	to	a	conductor.		
warning.	material	803	has	been	set	to	a	conductor.		
warning.	material	805	has	been	set	to	a	conductor.		
warning.	material	806	has	been	set	to	a	conductor.		
warning.	material	807	has	been	set	to	a	conductor.		
	on file syngen done	r	ctm nps	=			90 9	nrn = coll =	0 0	

View the Generated Spectrum

Break / Questions

Practical

- Source
 - Point, Volume
- Source Term
 No decay, Decay
- Absorbers
- Detectors
 - -Ge, RCC, Box
- Electronics
- Environment
- Spectrum Options