SYNTH 7 A Gamma-Ray Spectrum Generator

Overview What **SYNTH 7** is and does

- A Gamma-Ray Spectroscopy Interface to a very simple deterministic physics engine designed to quickly model gamma-ray measurements
- Uses simplified models and physics (e.g. "transport" is e^{-µx}, no scattering, no buildup, etc) Because the emphasis is on spectroscopy, the focus is on peak energies, intensities, and shapes. Details of the continuum are secondary
- Organizes the problem into five logical steps
- Because the process is deterministic (hard coded algorithms), as opposed to stochastic (Monte Carlo methods), the spectrum is generated in minutes and is independent of "count time"
- Produces a spectrum that can be viewed and saved in a number of different spectral data formats

An Over Simplified Gamma-Ray Measurement

Five Easy Pieces (With apologies to Richard Feynman)

- Sample Geometry and Bulk Composition
- Source Term (²⁴¹Am, ¹³⁷Cs, ⁶⁰Co, etc)
- Absorbers (composition, thickness)
- Detector (type, size, resolution, etc)
- Counting Parameters (energy calibration, etc)
- => Generated Gamma-Ray Spectrum

Sample Properties

- Point
 - Location (Distance from detector face)
- Disk
 - Location (Distance from detector face)
 - Composition
 - Mass
 - Size
 - Density

Sample Geometry and Composition

Source Term

Element	Isotope	Quantity			Decay Time
Mercury -	203 🗸	4.00e+0	3 Bq (d/s) ▼	1 y -
Periodic Table	· ·	, Min = 177	Max	= 210	Daughters
	1.00E+03d	900232	True	10y	232 Thorium
Add to List	3.70E+04d	270057	False	1y	57 Cobalt
	3.70E+04d	950241	False	ly	241 Americium
	3.00E+05d	270060	False	ly	60 Cobalt
	1.50E+05d	550137	False	ly	137 Cesium
Remove from List	1.50E+06d	480109	False	1y	109 Cadmium
	- 1.20E+05d	390088	False	1y	88 Yttrium
	5.00E+04d	580139	False	1y	139 Cerium
	4.00E+04d	500113	False	1y	113 Tin
	4.00E+03d	800203	False	1y	203 Mercury
Process					

Library Server

Searching	for nuclides in f	ile: D:\C# Pr	ojects\Dat	caLibraries\l	New_TORI-99	9c.db	3
Nuclide	Activity (Bq)	T1/2 (s)	iD1	Br1	iD2	Br2	
Th-232	1 000005+03	4 434F117	890229	1 0005400	6660000	1 800F-11	
Pa-228	7 003638+02	1 8158-08	890228	1 0005+00	000000	1.0001 11	
Ac-228	7.00326E+02	2.214E+04	900228	1.000E+00			
Th-228	5.64383E+02	6.033E+07	880224	1.000E+00			
Ra-224	5,63670E+02	3.162E+05	860220	1.000E+00			
Rn-220	5.63670E+02	5.560E+01	840216	1.000E+00			
Po-216	5.63670E+02	1.450E-01	820212	1.000E+00			
Pb-212	5.63583E+02	3.830E+04	830212	1.000E+00			
Bi-212	5.63575E+02	3.633E+03	840212	6.406E-01	810208	3.594E-01	
Po-212	3.61026E+02	2.990E-07	820208	1.000E+00			
T1-208	2.02549E+02	1.832E+02	820208	1.000E+00			
Co-57	3.70000E+04						
Am-241	3.70000E+04						
Co-60	3.00000E+05						
Cs-137	1.50000E+05						
Cd-109	1.50000E+06						
Y-88	1.20000E+05						
Ce-139	5.00000E+04						
Sn-113	4.00000E+04						
Hg-203	4.00000E+03						

Gamma-Ray Data Libraries

- Enhanced TORI-99 (based on the LBL Table of Radioactive Isotopes compilation revised to 1999)
- PCNuDat (based on the NNDC compilation revised to 2004)
- User Supplied (It's an open format that can implemented as a Microsoft Access or SQLite database

Absorber Geometry

- Disk
 - Composition
 - Thickness
 - I said the model was simple!

Absorbers

Absorbers File				
Absorber Material Aluminum	Thickness (cm)	1 -		
Add .2 c Remove	m, Aluminum	Transmission		
Clear				· · · · · · · · · · · · · · · · · · ·

Detectors

- Built-in High Purity Ge (Coaxial and Planar)
- Loadable Detector definitions (pseudo XML) Nal, CZT, BGO, Csl, LaX₃, PVT, Other
- Detector definitions can be generated with MCNP, and / or from experimental data

<efficiency 25cm="" @=""></efficiency>
40, 4.53E-03
50, 4.78E-03
60, 5.01E-03
70, 5.12E-03
80, 5.22E-03
90, 5.28E-03
100, 5.30E-03
120, 5.30E-03
150, 5.24E-03
200, 5.02E-03
300, 4.32E-03
400, 3.61E-03
500, 3.06E-03
600, 2.61E-03
800, 2.05E-03
1000, 1.70E-03
1500, 1.22E-03
2000, 9.50E-04
3000, 6.71E-04
4000, 5.12E-04
5000, 4.20E-04
6000, 3.49E-04
8000, 2.63E-04
10000, 2.09E-04

<Peak-to-Total> -5.129502308 2.381025409 -0.325915678 0.010552866 </Peak-to-Total> <Single-Escape-Peak> -7.2 9.14 -3.965 0.634 </Single-Escape-Peak> <Double-Escape-Peak> -7.88 8.78 -3.78 0.6 </Double-Escape-Peak> <FWHM> 8.478 0.0 7.0 0.65 </FWHM>

<diameter_cm> 7.62 </diameter_cm>

<length_cm> 7.62 </length_cm>

<relative_efficiency> 100 </relative_efficiency>

Detector Definition Equations

- Peak / Total = Exp($A_0 + A_1Ln(E/1000)$ + $A_2Ln(E/1000)^2 + A_3Ln(E/1000)^3$)
- SE / Peak = Exp($A_0 + A_1Ln(E/1000)$ + $A_2Ln(E/1000)^2 + A_3Ln(E/1000)^3$)
- DE / Peak = Exp($A_0 + A_1Ln(E/1000)$ + $A_2Ln(E/1000)^2 + A_3Ln(E/1000)^3$)

Detector Definition Sample

Detectors

- A number of adjustable parameters in addition to the crystal dimensions and resolution
- Standard EndCap materials
 - Beryllium
 - Carbon Fiber
 - Magnesium
 - Aluminum
 - Stainless Steel
 - Copper

Detector Parameters

Tool to make life a bit easier

 FWHM coefficient calculator to fit the Full Width at Half Maximum function FWHM = k(a + b(E / 1000)^c) to experimental data

FWHM Coefficient Calculator

19

Counting Parameters

Counting Parameters						
Eile						
Energy Calibration						
Zero =	0	(keV)				
Gain =	0.75	(keV /ch)				
Quad =	0	(keV / ch^2)				
Nal Intrinsic Non-Linearity						
ADC Channels = 4096 Live Time = 1000 sec. Full Scale Energy 3072 (keV) Return						

View the Generated Spectrum

Add Statistical Noise to the Generated Spectrum

Compare the Generated Spectrum to a Measured Spectrum

Compare the Generated Spectrum to a Measured Spectrum

Save the Generated Spectrum to a File

Break / Questions

Practical

- Source
 - Point, Volume
- Source Term
 No decay, Decay
- Absorbers
- Detectors
 - Ge, Nal, ...
- Electronics
- Spectrum Options...