# **SpectrumViewer**

**Quick Start Guide** 

Walter King and Associates

# Background

- Originally created as a tool for distribution to analysts associated with the NNSA Megaports Initiative, and others without access to the LANL PeakEasy code.
- Subsequently extended with additional capabilities and tools
  - Read and write more spectral formats
  - Ability to display and edit more header information
  - Display and compare data by energy or channels
  - Spectral manipulation tools
    - Spectral smoothing
    - Multiply spectral data by a constant
    - Smear spectral resolution
    - Gain shift
    - Correct spectrum for Nal intrinsic nonlinearity
    - ...

#### Basic operations and controls

- How to open a spectrum...
  - The primary spectrum
    - This is the spectrum that you want to learn more about.
  - A background spectrum
    - This is a system background spectrum preferably acquired for at least one hour in the same vicinity as the primary spectrum when only naturally occurring radioactive materials (NORM) is present.
  - A reference spectrum
    - This is a spectrum of a known suspect material.

#### Opening the primary spectrum



#### A plot of the primary spectrum



#### Opening a background spectrum



#### Opening a reference spectrum...



#### Opening a reference spectrum...



#### **Basic controls**

- Display Options
  - Display Mode (Scale)
    - Semi-Log (Default)
    - Linear
  - Grids
    - None
    - Coarse
    - Fine

#### Default settings for the display options



#### Spectral data plotted in Semi-Log mode



#### Spectral data plotted in Linear mode



#### Plot with the None grid option selected



#### Plot with the Coarse grid option selected



#### Plot with the Fine grid option selected



#### Basic controls

- Clicking and Dragging with the Mouse
  - "Zoom" --- Expanding a portion of the displayed spectrum
  - "Pan" --- Using the mouse to move around an expanded region to another portion of the spectrum It is like scanning a large page with a small magnifying glass.

#### **Rubber Band Zoom**



#### **Rubber Band Zoom**



#### **Rubber Band Zoom**



#### Vertical and Horizontal "Pan"



#### Known energy lines

- Isotope (suspect) lines
- Energy calibration lines

#### Isotope lines



#### Isotope lines



#### Isotope lines



#### Energy calibration check...



#### Energy calibration check...



# Energy calibration check...

- If there is not good agreement between the actual and expected locations of the calibration markers (green lines) and the associated peaks in the spectrum, this is a serious problem.
- The first priority is to have the instrument recalibrated.
- Then, there is the possibility that the spectrum has an incorrect energy calibration. Here, you really only have two options.
  - Acquire a new spectrum if at all possible.
  - Change the energy calibration in the existing spectrum.

# Changing the energy calibration with the Gain Adjust controls



# Changing the energy calibration with the Gain Adjust controls



#### Analysis Methods

- First, a quick energy calibration check
- Comparison to known energy lines
- Comparison to a reference spectrum
- Comparison to a background spectrum

### Quick energy calibration check



#### Comparison to known energy lines...



#### Comparison to known energy lines...



#### Comparison to known energy lines...























## Analysis Strategy

- Check the energy calibration.
- Look for neutron features in the spectrum:
  - Neutron capture lines
    - H
    - Cd
  - "Shark Fin" features.
- Compare the primary spectrum with the known isotope lines of SNM and other materials of interest (Pu-239, U-235, U-233, and Np-237).
- If you get a match, compare with applicable reference spectrum.

## Summary

- Basic controls and operations of the Spectrum Viewer software
- Three types of spectra
  - Primary
  - Background
  - Reference
- Check the energy calibration
- Comparison of primary spectrum to ...
  - Known isotope lines
  - Reference spectra
- Analysis strategy